

May15-17

Lighthouse Design
Document
Version 1.0

Caleb Brose, Chris Fogerty, Nick Miller, Rob Sheehy, Zach Taylor
October 26, 2014

May15-17

1

CONTENTS
1. Introduction .. 2

1.1. Project Definition ... 2

1.2. Project Goals .. 2

1.3. Definitions of Common Terms and Abbreviations ... 2

2. System Level Design .. 3

2.1. System Requirements .. 3

2.1.1. Use Cases .. 3

2.1.2. Functional Requirements .. 3

2.1.3. Non-Functional Requirements .. 5

2.2. Functional Decomposition ... 6

2.2.1. High Level Decomposition .. 6

2.2.2. Front-End .. 7

2.2.3. Back-End .. 7

2.2.4. Provider Interface ... 7

2.3. System Analysis .. 7

2.3.1. Technical Feasibility .. 7

2.3.2. Current Environment .. 7

2.3.3. Logical Design .. 8

3. Detailed Description ... 8

3.1. Interface Specifications .. 8

3.1.1. Lighthouse API version 0.1 .. 8

3.1.2. UI Specification ... 15

3.2. Testing Procedures and Specifications .. 18

4. Implementation Issues and Challenges .. 18

4.1.1. Understanding Docker .. 18

4.1.2. Development coordination ... 19

4.1.3. Security ... 19

5. Conclusion ... 19

Appendix A: Table of Figures .. 20

May15-17

2

1. INTRODUCTION

1.1. Project Definition
Within the past year, Docker has emerged as an execution and deployment environment for distributed

applications. It supports standardized application installation and execution via “containers” built from a

common template that can run on a variety of host platforms. In the past, the efforts to standardize

distributed and scalable applications were focused on the virtual machine, which was replicated across

the desired host platforms. Docker removes the overhead of hosting and running the virtual machine,

and instead utilizes the native system resources, while maintaining the desired isolation one would like

to see between multiple applications running on one system. Docker has achieved near native

performance on application startup and shutdown, meaning new applications can be deployed and

scaled as quickly as possible.

1.2. Project Goals
Our goal with Lighthouse is to provide a Docker host management system, capable of interfacing with a

variety of cloud providers including, but not limited to, Google Compute Engine, and Amazon Web

Services. Lighthouse will allow users to authenticate with their target Docker host platform, monitor the

state of their application instances, and deploy new containers from one centralized interface,

significantly reducing the time it requires to deploy and monitor applications across multiple cloud

providers. By the project completion, our goal is to have built a system that is efficient, modular, and

secure.

1.3. Definitions of Common Terms and Abbreviations
Term Definition

Docker
An open source platform used for creating, packaging, and shipping,
and running applications.

Image
A read only file system used by Docker which contains applications and
other files.

Container
A “running” image which is writeable. Containers are primarily used to
run the applications that are being developed.

Registry An image storage service.

GCE
Google Compute Engine

A virtual machine (VM) hosting service by Google which may host
Docker instances.

AWS
Amazon Web Service

A virtual machine hosting service by Amazon which may host Docker
instances.

JSON
JavaScript Object Notation

A data exchange format which is the primary mode of communication
between the frontend and backend applications.

Table 1 Common terms and their definitions

https://www.docker.com/whatisdocker/
https://docs.docker.com/terms/image/
https://docs.docker.com/terms/container/
https://docs.docker.com/terms/registry/
https://cloud.google.com/compute/
https://aws.amazon.com/
http://json.org/

May15-17

3

2. SYSTEM LEVEL DESIGN

2.1. System Requirements

2.1.1. Use Cases
For a successful implementation of our minimal viable product, we’ve identified two major actors in the

Lighthouse system: release manager, and IT admin.

2.1.1.1. Release Manager Functions

1. Log in / Authenticate
2. View currently deployed containers
3. Deploy and start a new container
4. Rollback a container deploy to a previous version

2.1.1.2. IT Administrator Functions

1. Log in / Authenticate
2. Initialize provider with authentication credentials
3. Create and delete system users
4. View provider statistics and analytics

2.1.2. Functional Requirements

 Docker addresses

o Description

 The ip address that are hosting Docker daemon publicly on port 2375.

o Users

 Administrators

o Actions

 add

 remove

 edit

 Docker Images

o Description

 Each docker daemon has a set of images referenced by name or uid.

o Users

 Developers/Administrators

o Actions

 add

 remove

 edit

 Docker Containers

o Description

 Each docker daemon has a set of running containers referenced by name or uid.

 Containers are spawned from images pre-existing inside a docker daemon.

o Users

May15-17

4

 Developers/Administrators

o Actions

 start

 Arguments

o exposed port

o command

o environment variables

 stop

 Docker Analysis

o Description

 Should be able to view running containers in real time.

o Users

 Developers/Administrators

o Actions

 view

 logs

 cpu usage

 memory consumption

 Authentication

o Description

 Given an email and password all users can be denied or granted access to the

webapp.

o Users

 Everyone

o Actions

 login

 Arguments

o Email

o Password

 logout

 Authentication Accounts

o Description

 Admins should be able to control user accounts.

o Users

 Administrators

o Actions

 add

 remove

 edit

May15-17

5

2.1.3. Non-Functional Requirements
Security System (should be secure and not allow unauthorized control)

● Protect agains

○ XSS attacks

○ session hijacking

○ unauthenticated requests

○ exposure of sensitive container/server data

● Only use HTTPS to mitigate various communication security exploits.

Code Quality (should be easy to maintain and understand)

● Git

○ Commit comments should be clear and concise, standard commit conventions

● Style Guides

○ GO

■ style guide

■ effective tips

○ JavaScript

■ style guide

● Code reviews must include at least 2 other team members to be verified for master merge.

http://en.wikipedia.org/wiki/Cross-site_scripting
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://code.google.com/p/go-wiki/wiki/CodeReviewComments#Go_Code_Review_Comments
https://golang.org/doc/effective_go.html
https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

May15-17

6

2.2. Functional Decomposition

2.2.1. High Level Decomposition

Figure 1: System Block Diagram

The overall architecture of Lighthouse is built upon the common client-server pattern. Users interact

with the system via a “single page” web application that’s loaded once into their browser, with

subsequent system requests made via a REST API over HTTPS, utilizing JSON as the data interchange

format.

Requests received from the web interface are routed through authentication and API control. Our API is

implemented as a superset of the standard Docker Remote API, allowing users to send specific Docker

requests to their target platform, as well as add new platforms, users, and other infrastructure

configuration.

Host providers manage the actual startup and application runtime, but are controlled via the Lighthouse

main controller. Provider interfaces are installed on each provider as part of the Lighthouse application

and define a common interface for communication between the host network and Lighthouse.

May15-17

7

Docker images are hosted on the Docker registry provided by the organization using Lighthouse. Host

providers are instructed to pull new images from the registry on application deployment.

2.2.2. Front-End
The goal of the front-end of the system is to present the user with information and provide the user

with a simple UI to manage their array of Docker installations. Using the API exposed by the back-end,

the front-end renders the response from the back-end into HTML and displays it to the user. The front-

end must know how to handle any errors in communicating with the back-end server, manage user

sessions (for logging in and out), and generate API requests to the back-end.

2.2.3. Back-End
It is the back-end’s job to authenticate users, cache Docker hosts from the provider interface, and

provide features on top of what Docker already provides, such as rolling back deployments. The backend

exposes a REST API (described below) that anyone can build off. While we use it as a way to

communicate with the front-end, the API allows for users to build easily build automation into their

systems. The back-end communicates with provider interface(s) in order to discover any cloud instance

that is owned by the user and running Docker. It must also elegantly handle errors by returning a sane

response to the client, and log any errors or events that pop up.

2.2.4. Provider Interface
The provider interface is installed within each cloud segment the user wants to access. It allows us to

use a single API on the back-end to locate relevant cloud instances across all providers. By being in the

relevant cloud, the provider interface is granted access to privileged APIs, allowing it to discover other

instances owned by the same account.

2.3. System Analysis

2.3.1. Technical Feasibility
There should not be any breaking issues with technical feasibility in terms of the base idea of the

project. Docker already provides a standard web interface. At its core, the Lighthouse project acts as a

demultiplexer for Docker containers, providing a single interface to interact with many Docker

containers.

We have run into some issues with clean design, however. Our initial goal was to provide a standard

routing API for routing all Docker API calls. This would allow us to provide a no-maintenance tunnel for

all Docker API calls right out of the box. Unfortunately, this became more complicated with the addition

of some features such as deployment undo and logging.

2.3.2. Current Environment
Docker v1.0 was released a little over a year ago, so it is just now starting to be adopted by large

companies. Because of this, there are only a few projects that accomplish what Lighthouse is looking to

accomplish. That being said, the two big players right now are Kubernetes and Panamax, and neither

does exactly what we’re looking to do. Kubernetes applies more to managing a cluster of containers on

a few machines, and Panamax is more unwieldy with less features than we’re looking to build.

May15-17

8

2.3.3. Logical Design
Lighthouse needs to be easy to deploy and customize. It should work right out of the box, with the

installer only providing Cloud authentication details and user accounts. To accomplish this goal, we have

decided to “Docker-ize” Lighthouse so a container can be created based on Lighthouse with virtually no

hassle on the part of the installer. As this is a webapp, all interaction will be performed through a

browser pointed at a server running the Lighthouse software.

3. DETAILED DESCRIPTION

3.1. Interface Specifications

3.1.1. Lighthouse API version 0.1

Note: prepend all endpoints with /api/v0.1

3.1.1.1. Requests to Docker Instance

These endpoints forward a request to a Docker instance. Note that:

 The hostAlias parameter serves as a lookup to the instance’s address.

 The dockerEndpoint parameter is exactly the request which is sent to the Docker instance.

 The payload JSON field is exactly the HTTP request body which is sent to the Docker instance.

GET /{hostAlias}/d/{dockerEndpoint} HTTP/1.1

POST /{hostAlias}/d/{dockerEndpoint} HTTP/1.1

Content-Type: application/json

{

"payload": <Docker Request Body>

}

PUT /{hostAlias}/d/{dockerEndpoint} HTTP/1.1

Content-Type: application/json

{

"payload": <Docker Request Body>

}

DELETE /{hostAlias}/d/{dockerEndpoint} HTTP/1.1

May15-17

9

Aliases will be client specific. For a full list of available Docker endpoints, see

http://docs.docker.com/reference/api/docker_remote_api_v1.14/

Note: The request types exactly mimic the Docker request types.

3.1.1.2. Responses to Docker Requests

The server will return one of two categories of responses:

 Status code in the 200 range – these are success responses and return exactly the Docker

response.

 Status code in the 300-500 range – these are error responses and return a JSON error message.

Examples can be found below.

A successful GET request:

A successful POST request:

Request:

GET /a_valid_host/d/version HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/json

{

"ApiVersion":"1.12",

"Arch":"amd64",

"GitCommit":"990021a",

"GoVersion":"go1.2.1",

"KernelVersion":"3.13.0-37-generic",

"Os":"linux",

"Version":"1.0.1"

}

http://docs.docker.com/reference/api/docker_remote_api_v1.14/

May15-17

10

A failed request to an invalid Docker endpoint:

Request:

POST /a_valid_host/d/containers/create HTTP/1.1

{

"payload": <Docker Create Body>

}

Response:

HTTP/1.1 201 Created

Content-Type: application/json

{

"Id":"e90e34656806",

"Warnings":[]

}

Request:

GET /valid_host/d/bad_endpoint HTTP/1.1

Response:

HTTP/1.1 404 Not Found

Content-Type: application/json

{

"error":"docker",

"message":"404 Not Found"

}

May15-17

11

A failed request to an invalid host:

A failed request to a valid endpoint with a server error:

3.1.1.3. Authentication

Log in to the application:

Example request and response:

Request:

GET /bad_host/d/valid_endpoint HTTP/1.1

Response:

HTTP/1.1 500 Internal Server Error

Content-Type: application/json

{

"error":"control",

"message":"GET request failed"

}

Request:

GET /valid_host/d/valid_endpoint HTTP/1.1

Response:

HTTP/1.1 500 Internal Server Error

Content-Type: application/json

{

"error":"postgres",

"message":"Database lookup failed"

}

POST /login HTTP/1.1

Content-Type: application/json

{

"Email":<Email>,

 "Password":<Password>

}

May15-17

12

Log out of

the

application:

Example request and response:

3.1.1.4. GCE VM Discovery

List all known, authorized, GCE VMs:

GET /logout HTTP/1.1

GET /plugins/gce/vms HTTP/1.1

Request:

POST /login HTTP/1.1

{

 "Email":"my_email@example.com",

 "Password":"my_password"

}

Response:

HTTP/1.1 200 OK

Content-Type: application/json

true

Request:

GET /logout HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/json

May15-17

13

Example request and response:

Request a

VM search:

This endpoint repopulates the /plugins/gce/vms and redirects to it.

Example request and response

Authorize a new GCE VM:

This endpoint redirects to a Google Authentication page.

GET /plugins/gce/vms/find HTTP/1.1

GET /plugins/gce/authorize HTTP/1.1

Request:

GET /plugins/gce/vms HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/json

[

 {

 "Name":"My Project Name",

 "Address":"example.gce.com",

 "CanAccessDocker":"true"

 }

]

Request:

GET /plugins/gce/vms/find HTTP/1.1

Response:

HTTP/1.1 302 Found

Content-Type: text/html

Found.

May15-17

14

Example request and response:

3.1.1.5. History

Get data of image’s last run container:

This endpoint retrieves the data used to create the container which was last run on the given image.

Note that:

 The hostAlias parameter serves as a lookup to the instance’s address.

 The imageName parameter is the Docker image whose history is requested.

Example request and response:

GET /{hostAlias}/history/{imageName} HTTP/1.1

Request:

GET /plugins/gce/authorize HTTP/1.1

Response:

HTTP/1.1 302 Found

Content-Type: text/html

 Found.

May15-17

15

3.1.2. UI Specification
The primary user interface will be a front-end JavaScript web application. Users will authenticate to the

back-end service using this web interface. This will provide an easy way for the user to interact with the

Lighthouse service.

3.1.2.1. Instances

Our goal for the user interface is to allow users to accomplish the success scenarios outlined in our Use
Cases section in a timely and simplistic fashion.

When a user first navigates to the web application, they will immediately be prompted for a login
(username and password. Upon successful authentication with the server, the user will be redirected to
the instance index page shown below.

Request:

GET /a_valid_host/history/my_image HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/json

{

 "History": [

 {

 "CreateTime":"10-25-2014 11:53",

 "Name":"MyContainer",

 "Payload":<Docker Create Body>

 }

]

}

May15-17

16

Figure 2: List of Cloud Instances running Docker

On this page the user can see a list of the available cloud instances in table format. Relevant data is
shown for each individual instance so the user can get an informational overview of their instances.
Above the table, there is a list of actions the user can take. Rescan will launch an instance discovery task
to find cloud instances that are available. Add Provider will take the user to a form where they can add
an additional cloud provider to their system.

3.1.2.2. Instance Detail

Since the user will potentially have hundreds of instances across several cloud platforms, it is important
to make this view filterable, allowing the user to find the exact subset of instances they are looking for.

Once the user has found the instance they are interested in, they can click on its Hostname field to drill
down to that instance.

From this view, the user can investigate all information regarding this particular host. Some of the
information that may included on this page would be the status of the host, Docker connectivity, the
cloud platform it’s running on, unique identification, and possibly several other technical data points.

May15-17

17

Figure 3: Instance Detail page

In addition to information about the host, this view will include a list of Docker containers that are
running on it. Again the user has options above the table to take an action. Rescan will launch a task to
refresh the status of Docker on this instance. Deploy Container will present the user with a form to
deploy a new container to this instance.

3.1.2.3. Container Deployment

Deploying a container to an instance is one of the main use cases for Lighthouse. Since this is such an
important feature, we will want this feature to be as easy to digest as possible. Upon clicking on Deploy
Container in the above diagram, the user will be prompted with a form to set up their deployment. This
view is shown below.

May15-17

18

Figure 4: Container Deployment page

The user will select the Docker image that they want to deploy. Then they will build their run command
in the form. The Lighthouse UI will automatically build and validate the run command as the user is
customizing their options. This provides instant feedback for the user and lets them see exactly what
they will be deploying.

3.2. Testing Procedures and Specifications
The plan is for Lighthouse to be developed in an agile fashion. New features will be added over time,

with each iteration of the product adding additional features and/or bug fixes. The following rules will

apply to all developers.

1. Tests will be written for each commit, covering the code written for that commit or updating

previous tests to reflect code changes.

2. If a bug is found, a bug fix commit will be created, and tests will be created to prevent a

regression.

3. Tests will not be modified unless an investigation into a test failure determines the test is

incorrect.

4. Pull Requests will not be accepted unless all tests are passing in the Pull Request’s branch.

4. IMPLEMENTATION ISSUES AND CHALLENGES

4.1.1. Understanding Docker
The Docker platform is a relatively new environment, providing plenty of challenge for us as a team to
digest and understand the use and workflow. To ease the learning curve, our plan is to wrap Lighthouse
itself within a deployable Docker container. This will allow us to better understand the workflow
associated with Docker and use the recent best practices that have come out of the community.

May15-17

19

4.1.2. Development coordination
One of the major challenges we’ve encountered thus far is coordination between development tracks.
We are utilizing git for our version control, but the responsibility to keep the design modular and flexible
rests on the team as a whole.

4.1.3. Security
At every level of the application, any network transfer must be as secure as possible. Breaches in our

security protocol have the potential to significantly harm the target Docker host providers. Unauthorized

access of the target host platform gives full control over the Docker instance exposed, meaning

applications (i.e. Docker containers) can be stopped and started at will. The two major areas of security

concern are the provider interfaces and the user interface. A first step towards strong security for

Lighthouse is user authentication and server-side data validation.

5. CONCLUSION
With the advent of Docker, there has been a torrent of new technical challenges surrounding the
technology. Now that Docker has landed and has become an important and accepted industry standard,
the foundation has been created. Some of the new challenges will be around building on top of this
technology, particularly management, security, and development of best practices.

Lighthouse’s main purpose is to tackle the management of the Docker platform. Our main goal is to

make management of this platform simple, efficient, and secure. By communicating frequently with

potential stakeholders, making the project open, and using standard and modern technologies, we will

be able to accomplish the goals outlined in this document, which will allow Lighthouse to be a successful

and useful tool for Docker management.

May15-17

20

APPENDIX A: TABLE OF FIGURES
Figure 1 System Block Diagram ... 6

Figure 2 List of Cloud Instances running Docker ... 16

Figure 3 Instance Detail page .. 17

Figure 4 Container Deployment page ... 18

