

Team: May15-17

Advisor: Dr. Mitra

Lighthouse Project
Plan
Client: Workiva

Version 2.1

Caleb Brose, Chris Fogerty, Nick Miller, Rob Sheehy, Zach Taylor
November 11, 2014

Contents
1 Problem Statement ... 2

2 Definitions and Common Abbreviations ... 2

3 Deliverables ... 2

3.1 Backend ... 2

3.2 Frontend .. 3

3.3 Documentation ... 3

4 Specifications .. 3

5 Concept Sketch/Mockup ... 4

6 User Interface Description .. 5

6.1 Instances ... 5

6.2 Instance Detail .. 6

6.3 Container Deployment .. 7

7 Requirements .. 7

7.1 Use Cases .. 7

7.1.1 Release Manager Functions .. 8

7.1.2 IT Administrator Functions.. 8

7.2 Functional Requirements .. 8

7.3 Non-Functional Requirements .. 9

8 Work Breakdown Structure .. 10

9 Resource Requirements .. 11

10 Project Schedule ... 11

11 Risks .. 12

11.1 Technical Feasibility .. 12

11.2 Current Environment .. 12

Appendix A: Table of Figures .. 13

Appendix B: What is Docker? .. 14

Project Plan v1 CprE 491 May15-17

2

1 PROBLEM STATEMENT
Within the past year, Docker has emerged as an execution and deployment environment for large-scale,

distributed applications. In its current state, the tooling surrounding Docker is still rapidly evolving and

many systems are immature and not production ready. For organizations hosting many applications

across multiple cloud platforms, the manual management of Docker hosts and applications has proved

to be challenging and time consuming, especially as the number of hosts to monitor grows. The goal for

Lighthouse is to provide an open source application that centralizes the management and monitoring of

Docker hosts across a variety of cloud platforms, including the Docker containers executed within them.

2 DEFINITIONS AND COMMON ABBREVIATIONS
Term Definition

Docker
An open source platform used for creating, packaging, and shipping,
and running applications. You can read more in Appendix B: What is
Docker?.

Image
A read only file system used by Docker which contains applications and
other files.

Container
A “running” image which is writeable. Containers are primarily used to
run the applications that are being developed.

Registry An image storage service.

GCE
Google Compute Engine

A virtual machine (VM) hosting service by Google which may host
Docker instances.

AWS
Amazon Web Service

A virtual machine hosting service by Amazon which may host Docker
instances.

JSON
JavaScript Object Notation

A data exchange format which is the primary mode of communication
between the frontend and backend applications.

Table 1 Common terms and their definitions

3 DELIVERABLES
Lighthouse consists of the following modules:

3.1 Backend
The backend system will be capable of interfacing with an existing instance of Docker. It will

communicate with Docker instances via Docker’s REST API, and it should be capable of:

 Routing all valid Docker API calls through itself to the appropriate Docker instance.

 Authenticating users, using per-instance permissions, and blocking unauthorized requests.

 Extending Docker’s functionality by intercepting requests to Docker and calling internal

functions, such as logging and history.

https://www.docker.com/whatisdocker/
https://docs.docker.com/terms/image/
https://docs.docker.com/terms/container/
https://docs.docker.com/terms/registry/
https://cloud.google.com/compute/
https://aws.amazon.com/
http://json.org/

Project Plan v1 CprE 491 May15-17

3

3.2 Frontend
The frontend will be a web application capable of utilizing the backend to manage Docker instances. It

will use JavaScript and JavaScript libraries such as Angular, and should be able to:

 Perform basic container management actions such as Create, Stop, Remove, Update, and Pause

 View past containers run in the Docker instance. That is, view a history of each application

running on the instance

 Log in and out of the backend application to authenticate frontend users.

3.3 Documentation
The backend API will be well documented in order to accommodate users that wish to automate

actions, create their own frontend applications, or extend our frontend with new functionality.

4 SPECIFICATIONS

Specification Definition Value Verification Method

Easy to Setup &
Learn

We want the server software to be easy to
understand and setup. This is supposed to
be a tool that not only helps with managing
Docker, but can be a tool that helps teach
the potential and importance of Docker.
This means that we should have a
simple/efficient setup process with high
quality documentation.

med The server shouldn’t
take more than 10
minutes to set up
locally and play around
with, given that the
user has all the server
dependencies
preinstalled.

Multi-Platform &
“Docker-izable”

Our server software should be highly
compatible with running inside a Docker
container, seeing as our project is all about
managing Docker containers. Allowing our
project to run inside Docker also should give
us the advantage of running across multiple
platforms as well.

high Our Docker-ized server
software should have
99% of the functionality
as our standalone
server software. We
should also support
100% of platforms that
support running
Docker.

Docker Image
Efficiency

The Docker image to run our server should
be extremely efficient and lightweight to
store inside any Docker registry.

low Our server Docker
image should not be
any bigger than 700
MBs.

Hosted Site
Uptime

The hosted site must be consistently
available to users, such that anyone hosting
our site should be able to keep a reasonable
uptime with our server software.

med Over the span of one
month our server
software should be up
for at least 95% of that
time, without any
intervention of from
system admins.

Project Plan v1 CprE 491 May15-17

4

Specification Definition Value Verification Method

Modern Project The project should be using the latest and
greatest software tools and languages. Our
project should include and practice new and
growing trends in the software industry that
will make our project and software more
desirable to emerging startups, but should
still catch the attention to larger corporate
software companies.

low Our project should
include at least two
new emerging
languages or libraries in
the software industry.

Table 2 Specifications

5 CONCEPT SKETCH/MOCKUP

Figure 1 Lighthouse conceptual diagram

The overall architecture of Lighthouse is built upon the common client-server pattern. Users interact

with the system via a single-page web application written in JavaScript that is loaded once into their

browser, with subsequent system requests made via a REST API over HTTPS, utilizing JSON as the data

interchange format.

Requests received from the web interface are routed through authentication and API control. Our API is

implemented as a superset of the standard Docker Remote API, allowing users to send specific Docker

requests to their target platform, as well as add new platforms, users, and other infrastructure

configuration.

Project Plan v1 CprE 491 May15-17

5

Host providers manage the actual startup and application runtime, but are controlled via the Lighthouse

main controller. Provider interfaces are installed on each provider as part of the Lighthouse application

and define a common interface for communication between the host network and Lighthouse.

Docker host providers are instructed to pull new images from the registry on application deployment.

Note that the Docker registry and associated code repositories are defined and configured by the

organization and is outside the scope of the Lighthouse system. The registry defined REST API allows

Lighthouse to communicate with it.

6 USER INTERFACE DESCRIPTION
The primary user interface will be a front-end JavaScript web application. Users will authenticate to the

back-end controller module using this web interface. This will provide an easy way for the user to

interact with the Lighthouse service.

6.1 Instances
Our goal for the user interface is to allow users to accomplish the success scenarios outlined in the

project’s requirements.

When a user first navigates to the web application, they will immediately be prompted for a login

(username and password. Upon successful authentication with the server, the user will be redirected to

the instance index page shown below.

Figure 2 Listing available Docker instances

On this page the user can see a list of the available cloud instances in table format. Relevant data is

shown for each individual instance so the user can get an informational overview of their instances.

Above the table, there is a list of actions the user can take. Rescan will launch an instance discovery task

Project Plan v1 CprE 491 May15-17

6

to find cloud instances that are available. Add Provider will take the user to a form where they can add

an additional cloud provider to their system.

6.2 Instance Detail
Since the user will potentially have hundreds of instances across several cloud platforms, it is important

to make this view filterable, allowing the user to find the exact subset of instances they are looking for.

Once the user has found the instance they are interested in, they can click on its Hostname field to drill

down to that instance.

From this view, the user can investigate all information regarding this particular host. Some of the

information that may be included on this page would be the status of the host, Docker connectivity, the

cloud platform it’s running on, unique identification, and possibly several other technical data points.

Figure 3 Docker instance detail page

In addition to information about the host, this view will include a list of Docker containers that are

running on it. Again the user has options above the table to take an action. Rescan will launch a task to

refresh the status of Docker on this instance. Deploy Container will present the user with a form to

deploy a new container to this instance.

Project Plan v1 CprE 491 May15-17

7

6.3 Container Deployment
Deploying a container to an instance is one of the main use cases for Lighthouse. Since this is such an

important feature, we will want this feature to be as easy to digest as possible. Upon clicking on Deploy

Container in the above diagram, the user will be prompted with a form to set up their deployment. This

view is shown below.

Figure 4 Container deployment page

The user will select the Docker image that they want to deploy. Then they will build their run command

in the form. The Lighthouse UI will automatically build and validate the run command as the user is

customizing their options. This provides instant feedback for the user and lets them see exactly what

they will be deploying.

7 REQUIREMENTS

7.1 Use Cases
For a successful implementation, we’ve identified two major actors in the Lighthouse system: release

manager and IT admin.

Project Plan v1 CprE 491 May15-17

8

7.1.1 Release Manager Functions
1. Log in/Authenticate

2. View currently deployed containers

3. Deploy and start a new container

4. Rollback a container/deploy a previous version

7.1.2 IT Administrator Functions
1. Log in/Authenticate

2. Initialize provider with authentication credentials

3. Create and delete system users

4. View provider statistics and analytics

7.2 Functional Requirements
 Docker addresses

o Description

 The IP address that are hosting Docker daemon publicly on port 2375.

o Users

 Administrators

o Actions

 add

 remove

 edit

 Docker Images

o Description

 Each Docker daemon has a set of images referenced by name or unique ID.

o Users

 Developers/Administrators

o Actions

 add

 remove

 edit

 Docker Containers

o Description

 Each Docker daemon has a set of running containers referenced by name or

unique ID.

 Containers are spawned from images pre-existing inside a Docker daemon.

o Users

 Developers/Administrators

o Actions

 start

 Arguments

o exposed port

Project Plan v1 CprE 491 May15-17

9

o command

o environment variables

 stop

 Docker Analysis

o Description

 Should be able to view running containers in real time.

o Users

 Developers/Administrators

o Actions

 view

 logs

 CPU usage

 memory consumption

 Authentication

o Description

 Given an email and password all users can be denied or granted access to the

webapp.

o Users

 Everyone

o Actions

 login

 Arguments

o Email

o Password

 logout

 Authentication Accounts

o Description

 Admins should be able to control user accounts.

o Users

 Administrators

o Actions

 add

 remove

 edit

7.3 Non-Functional Requirements
Security System (should be secure and not allow unauthorized control)

● Protect against

○ XSS attacks

○ session hijacking

○ unauthenticated requests

http://en.wikipedia.org/wiki/Cross-site_scripting

Project Plan v1 CprE 491 May15-17

10

○ exposure of sensitive container/server data

● Only use HTTPS to mitigate various communication security exploits.

Code Quality (should be easy to maintain and understand)

● Git

○ Commit comments should be clear and concise, standard commit conventions

● Style Guides

○ GO

■ style guide

■ effective tips

○ JavaScript

■ style guide

● Code reviews must include at least 2 other team members to be verified for master merge.

8 WORK BREAKDOWN STRUCTURE
Each member has been assigned a role on the team. In addition, individuals have been assigned

separate pieces of the project, mainly divided by the project’s architectural modules.

Team Member Role Role Responsibilities Project Responsibilities

Caleb Brose Project Lead ● Project scheduling
● Communication with

Workiva
● Communication with

advisor

● Development of
Lighthouse
controller module

Chris Fogerty Communication Lead ● Document compilation
● Weekly report generation

● Development of
Lighthouse
controller module

Nick Miller Web Developer ● Development of project
website

● Development of
Lighthouse front-
end user interface
module

Rob Sheehy Key Concept Holder ● Handling and
documentation of project
concepts

● Development of
Lighthouse hosting
provider interface
module(s)

Zach Taylor Key Concept Holder ● Handling and
documentation of project
concepts

● Development of
Lighthouse front-
end user interface
module

Table 3 Work breakdown by member

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://code.google.com/p/go-wiki/wiki/CodeReviewComments#Go_Code_Review_Comments
https://golang.org/doc/effective_go.html
https://google-styleguide.googlecode.com/svn/trunk/javascriptguide.xml

Project Plan v1 CprE 491 May15-17

11

9 RESOURCE REQUIREMENTS
Resource Purpose Means of acquiring Estimated cost

Shared Google
Cloud Services
developer account

Used to test and deploy
our application

Provided by Workiva Approx. $10/month

Amazon Web
Services developer
account

Used in late development
to test multi-provider
functionality

Provided by Workiva Free for low usage

Table 4 Resource requirements and cost

10 PROJECT SCHEDULE
Our goal for the development lifecycle of Lighthouse is to utilize Agile practices as much as possible.

Agile development defines a loose set of constraints focused on small iteration cycles. These cycles are

split into (in our case) two-week sprints.

The beginning of the sprint involves a planning meeting where the team decides on which work tickets

in the backlog are highest priority for the upcoming sprint. Tickets should be as small and well-defined

as possible and efforts are made to break potentially large tickets down into smaller units of work, with

the end goal being feasibility and testability once the work is complete.

Figure 5 Sprint ticket board hosted by Trello.

During the sprint, tickets are moved across the board as shown above. To Do marks tickets moved from

the backlog during the spring planning meeting, Doing marks tickets in progress, Verification marks

tickets in the code review/testing process, and Completed marks tickets merged into the master

development branch.

Project Plan v1 CprE 491 May15-17

12

The sprint development cycle is outlined as follows:

Figure 6 Sprint development cycle

Our intention is to meet with our project stakeholder and client, Workiva, at the end of every two-week

sprint cycle to relay the work that has been done and discuss work for the upcoming sprint. The first

week of the upcoming semester will focus on re-grouping on a team and outlining the major features

left to implement. After that, we will start our two-week sprint cycles, with the last two weeks of the

semester wrapping up any work left and preparing for our final demonstration to Workiva and the

review committee.

11 RISKS

11.1 Technical Feasibility
There should not be any breaking issues with technical feasibility in terms of the base idea of the

project. Docker already provides a standard web interface. At its core, the Lighthouse project acts as a

dashboard for Docker containers, providing a single interface to interact with many Docker containers.

We have run into some issues with clean design, however. Our initial goal was to provide a standard

routing API for routing all Docker API calls. This would allow us to provide a no-maintenance tunnel for

all Docker API calls right out of the box. Unfortunately, this became more complicated with the addition

of some features such as deployment undo and logging.

11.2 Current Environment
Docker v1.0 was released a little over a year ago, so it is just now starting to be adopted by large

companies. Because of this, there are only a few projects that accomplish what Lighthouse is looking to

accomplish. That being said, the two big players right now are Kubernetes and Panamax, and neither

does exactly what we’re looking to do. Kubernetes applies more to managing a cluster of containers on

a few machines, and Panamax is more unwieldy with less features than we’re looking to build. The

existence of these projects prove that something like Lighthouse is needed. Lighthouse may be a bit

behind them in terms of development, but because Kubernetes and Panamax are currently in a

rough/beta state, it is possible for Lighthouse to catch up. That is, Lighthouse will not be immediately

irrelevant.

Project Plan v1 CprE 491 May15-17

13

APPENDIX A: TABLE OF FIGURES
Figure 1 Lighthouse conceptual diagram .. 4

Figure 2 Listing available Docker instances ... 5

Figure 3 Docker instance detail page .. 6

Figure 4 Container deployment page ... 7

Figure 5 Sprint ticket board hosted by Trello. .. 11

Figure 6 Sprint development cycle ... 12

Project Plan v1 CprE 491 May15-17

14

APPENDIX B: WHAT IS DOCKER?
Essentially, Docker supports standardized application installation and execution via
“containers” built from common templates that can run on a variety of host platforms. In the
past, the efforts to standardize distributed and scalable applications were focused on the
virtual machine, which was replicated across the desired host platforms. Docker removes
the overhead of hosting and running the virtual machine, and instead utilizes the native
system resources, while maintaining the desired isolation one would like to see between
multiple applications running on one system.

In practice, the Docker host responsible for running the application container does not need
to know of or explicitly install the application dependencies, as the container is built with its
own layered file system to store dependencies and executables. Because of this, a Docker
container can be built and run on a development machine, a testing server, and a
production server with no difference in configuration of that container. A container can
access its own file system, unless explicitly given permission otherwise, which maintains
isolation between multiple containers on the same host.

Docker has achieved near native performance on application startup and shutdown,
meaning new applications can be deployed and scaled as quickly as possible.

