
Lighthouse

Client:

Advisor: Dr. Simanta Mitra

Why Lighthouse?

Design Requirements

Use Cases
Release Manager

● Log in/Authenticate
● View currently deployed containers
● Deploy and start an application
● Rollback an application
● View application logs

A tool to create and manage Docker instances across multiple cloud platforms

may1517.ece.iastate.edu
github.com/lighthouse

May15-17
Caleb Brose, CprE
Chris Fogerty, CprE
Nick Miller, CprE
Rob Sheehy, SE
Zach Taylor, CprE

Problem
Docker is great, but I want to:

● Manage my application as a whole, not as individual Docker instances
● Utilize cloud providers like GCE or AWS to run my application
● Control who can change my application
● Do all of this through a user interface

Solution
Lighthouse centralizes the management of multiple Docker instances, 
regardless of their hosted platform or geographical location.

Design - System

Design - Components
Lighthouse (server-side data management)

Beacon (provider interfacing)

Harbor (web client)

IT Administrator
● Log in/Authenticate
● Add cloud providers (beacons)
● Manage users
● View application status

Provides a central access point to 
Docker instances
● Handles user authentication
● Manages application deployments 

and history
● Routes requests to Docker instances

Create software “drivers” for detecting 
cloud environments
● Probe Providers for existing/owned 

VMs with Docker
● Establish basic API for Lighthouse
● Create pluggable interface for future 

cloud providers

Provides a user interface for managing 
individual Docker instances and 
performing large deployments.
● Unidirectional data-flow provides 

predictable state changes
● Support for streaming APIs
● Client-side template rendering 

trades initial download time for 
responsive UI updates

Non-Functional Requirements
● Security - specifically from:

○ Cross-site scripting, session 
hijacking, data exposures

○ Unauthenticated and unauthorized 
requests

● Extensibility and documentation
○ Additional functionality should be 

straightforward
○ Users should be able to create their 

own frontend
● Low latency

○ Early error detection in the pipeline

Functional Requirements
● Docker core functionality

○ Container/image management
● Lighthouse custom functionality

○ Application level control and 
versioning

○ Cloud provider interfacing
● Application analysis

○ Logs, history, usages, etc
● User management

Testing
Plan:

● Test-Driven Development
● Continuous Integration
● Code Review each Pull Request

Services:
● GitHub (repository hosting)
● Travis CI (tests)
● Coveralls (coverage)

Technology
Lighthouse: Beacon: Harbor:

What is Docker?
Distributed applications pose a large number of challenges; two of the most 
important being consistency across environments and scalability. Docker provides 
a thin application layer on top of server operating systems, isolating application 
execution and allowing new applications (containers) to start quickly from uniform 
file-system images. Docker removes the need for a full virtual machine, allowing 
applications to share system resources, providing near-native runtime speed.

© 2012 Google Inc. All rights reserved. Google Compute Engine™ is a trademark of Google Inc
The Postgres logo is licensed under CC SA 2.5 which may be found at creativecommons.org/licenses/by-sa/2.5/

The AngularJS logo is licensed under CC BY SA 3.0 which may be found at creativecommons.org/licenses/by-sa/3.0/
The Go logo by Renée French is licensed under CC BY 3.0 which may be found at creativecommons.org/licenses/by/3.0/

The Digital Ocean logo is licensed under CC BY NC SA 4.0 which may be found at creativecommons.org/licenses/by-nc-sa/4.0/


