Senior Design Team May15-17

lowa State University - Ames, IA
May 1st, 2015

About the Team

Caleb Brose Team Lead

Chris Fogerty Communication Lead
Zach Taylor Key Concept Holder
Rob Sheehy Key Concept Holder
Nick Miller Web Designer

Thanks to:

o Dr. Mitra, CS Dept. - Advisor
o Dave Tucker, Workiva - Client

B w o=

Docker

Lighthouse
Design

Testing and Quality Process

What is Docker?

“Docker is an open platform for developers and
sysadmins to build, ship and run distributed
applications”

- docker.com

Still confused? So were we.

0000000000000 O00000e

Why use Docker?

Situation

o As a Release Manager for a distributed application, | want to ensure
« Consistency - Developer computers aren’t production servers
« Stability - Nodes will fail in distributed applications
« Modularity - Program dependencies and environments need to be isolated

The Solution

o Docker
« Images ensure consistent environments and files
« Containers ensure stability & runtime isolation

0000000000000 0000eO

Docker Images

What

o An immutable snapshot of an operating system to share with other
machines running docker.

Servers/Virtual
lEl Machines

Docker
Registry

=
L\

Developer

Other
Developers

0000000000000 000eO0O0

Docker Containers

What

o A sandboxed instance of a running image.

A I
I
Images

Container

Stdin/Network Requests
Image
> Container
Stdout/Stderr

0000000000000 00eO00O0

> docker
/* wait
> docker
/* list
> docker
hello

> docker
/* list

pull debian

a sec to download 84.89 MBs */

images

of images */

run -ti debian echo
world

ps -—-a

of containers */

‘hello world’

Why use Lighthouse?

Docker is great, but | want to:

o Manage my application as a whole, not as individual Docker instances
o Utilize cloud providers like GCE or AWS to run my application

o Control who can change my application

o Do all of this through a user interface

The Solution

o A web-based tool for administrating hundreds of Docker programs
across multiple networks

0000000000000 eO00000

Lighthouse

Functional Requirements

Docker core functionality
o Container/image management

Lighthouse custom functionality

o Application level control - deployments, new versions, rollbacks
o Cloud provider interfacing

Application analysis
o Logs, history, usages, etc

User management

0000000000000 00000

Non-Functional Requirements

Security

o Authenticated requests
o Authorized users

Extensibility and documentation
o Additional functionality should be straightforward
o Users should be able to create their own frontend

Low latency
o Early error detection in the pipeline

0000000000000 00000

Market Survey

Related products

Panamax - existed at conception
Google Container Engine - November 4
Rocket - December 1

Docker Swarm - December 4

O O O

How Lighthouse sets itself apart

o More user control
o Enterprise-ready
o Self-hosted

0000000000000 0000O0

Design - System Diagram

Cloud Providers
(Docker hosts)

Beacon

A 4
A

S - v { || DockerRegistry | !
' Datastore — Lighthouse .
E N f B r—
. Organization : P Repos ffory
i Hosted | v o u

5 Harbor ! | Organization

: Hosted
Lighthouse

0000000000000 00000

Design - Lighthouse

O
O
Request/Response @)
To Provider Interface (@)
Request/Response —— e
ToDatabase (-------com e e -~ —" o
: : | ==
1 ‘—’ ' Organization ll
- Provider Interface | ; Hosted | ! (@)
< ==—=————, | Database Interface APIRouting 1«— 5 thentication Key Lo e o
i X i Lighthouse O
E ; (@)
: Logging i e)
User Authentication ! o
sy s v : O
O
Request/Response @)
To Front-End (@)
O
O

Design - Beacon

Docker Containers

v
Cloud Service » Cloud Service
Provider API B Provider Detector
Docker Container L¢
Discovery
Lighthouse API
Router
Authentication
7y
. A

Cloud Provider's Firewall

Request/Response
To Central Back-End

Cloud Providers
(Docker hosts)

.w

Organization
Hosted

e

Lighthouse

Docker Registry

Harbor

Lighthouse

F
=

Organization
Hosted

0000000000000 00000

Technical Issue - Why Beacons Exist

Situation

o As a member of IT/DevOps | want to quickly and efficiently expose my
cluster of Docker VMs

Challenge

o Need a tool to discover VMs inside a cloud environment with little/no
prior knowledge of Provider

Solution

o Create software “drivers” for detecting cloud environments

= Probe Providers for existing/owned VMs with Docker
= Establish basic API for Lighthouse
= Create pluggable interface for future cloud providers

0000000000000 00O00O0

Design - Harbor

has type and associated data O
(ooker nosts)
! Data O
Action X
e O
...................... y Docker Registry
A A — N O
- Lighthouse O
: /N
anization | —

hosed” | I ll @)
Model / Store e “Hosed . O
Lighthouse O
emits change event (@)
< Controller O
Service Two-way binding still (@)
Polls model for 7y allowed here but .

7y new state on ; cannot update state
change event ! without first being O

and pushes to v transformed to an

view (via action (typically O
$scope) View through a Service) O
Backend O

Technical Issue - Authentication

automatically inform the client of its auth status browser cache

: . @)
Situation 8
o As a user of Harbor | need to refresh my page amer |
or restart Lighthouse. e ndeser=nl 8
Challenge “ 9
@)
o Harbor is a single-page application and uses o i user i o]
client-side template rendering e - 8
Causes a problem with routing and authentication | "eceasirearous o
clien else
S O I u ti O n _ redirect to client login O
. . atwaye { store get @)
o Generate a notification on the server to e [
v O
@)
@)
@)

Technical Issue - Streaming

Situation
o As a user of Harbor, | want to be able to view stats,
progress, and logs without manually refreshing.
Challenge:

o HTTP responses can be streamed, but there are 3
hops from Docker to Harbor which requires a lot of
coordination

Solution:

o Stream all Docker responses from Beacon to
Lighthouse and from Lighthouse to Harbor

Docker instance

A

A 4

read queuﬂ

Beacon

A

! TCP stream of
i byte segments

v
read queuﬂ
Lighthouse

response
request ' (stream)
v
Client

0000000000000 O00O0O0O0O0

Technical Issue - Application Streams

Situation

o As arelease manager creating or updating a large application | want real
time updates of the deployment status and concise errors.

Challenge

o Deployments perform many operations on potentially hundreds of instances
* Need to consistent way to report statuses and operation updates

Solution

o A stream of well-defined status update objects

= Operation updates wrap statuses of individual instances
= Instances report successes, failures, warnings, etc.

0000000000000 O0O0O0O0O0O0

Testing and Quality Process

Test-Driven Development in GitHub

GitHub tracks commits and

discussion
\\

O All pull requests go through code review

Travis-Cl runs unit tests
O Build fails if any tests fail

Coveralls reports code coverage
O Build fails if coverage is too low

LS

cmbrose commented 3 days ago

Owner

@lighthouse/owners for your review. Also completely open to ideas of how to do the drivers (or any of

this really) in a cleaner way.

B Caleb Brose added some commits 3 days ago

Merging with master

Added Reload() to tests

Added Init tests

Added default connection tests

Removed error logs

ngmiller commented 2 hours ago

+1

Add more commits by pushing to the database-flags branch on lighthouse/lighthouse

¢ All is well — 3 successful checks
+ continuous-integration/travis-ci/pr — The Travis Cl build passed
v continuous-integration/travis-ci/push — The Travis Cl build passed

« coverage/coveralls — Coverage increased (+1.6%) to 84.62%

This pull request can be automatically merged.
You can also merge branches on the command line

=

AN

Hide all checks
Details
Details

Details

Merge pull request

0000000000000 O000O00O0

Testing Environment

Lighthouse, Beacon
o Golang packages

= testing, testify
o Go fmt

Harbor

o PhantomdJS “headless” browser
o Jasmine behavioral testing framework
o JSHint

@O0000000000O00O0O00O00O0

Thank you

Beacon Management

ngh ouse Applications gned in as admin@gmail.com

+ ADD BEACON P> DEPLOY APP

local @ 127.0.0.1:5002

Name Address Docker Status

local.boot2docker 127.0.0.1:5001/v1.18 true

gce @ 146.148.80.171:5004

Name Address Docker Status
gce.production 10.240.178.252:2375/v1 false
gce.beacon 10.240.59.140:2375/v1 false
gce.registry-ricky 10.240.224.189:2375/v1 false
gce.sandbox 10.240.114.254:2375/v1.17 true

© Lighthouse 2014

Instance Management

L]gh house Applications Beacons Users Sig as admin@gmail.com SIGN OUT

Beacons
local.boot2docker
Containers
¥ show all
] Status Image Command Created Ports
959668883c ubuntu:latest sleep 30 a few seconds ago 0
bf623787fd ubuntu:latest /bin/bash a day ago]
Images
) show all
ADD
D Parent ID Repo tags Size Virtual Size Created Actlons
03119fe33f25 3d3f23a06077 postgres:latest 0 213931717 7 days ago n
cd45581f38c8 086277153bf9 <none>:<none> 66 113476809 7 days ago n
5ceada820a62 0O4eece945bc8 <none>:<none> 0 212659688 7 days ago n
6bb250483fa2 ea18d017f758 <none>:<none> 0 212130391 7 days ago n
5a1814e18a14 75299d60d9a9 <none>:<none> 0 211473646 7 days ago n
8d1506ab72af 8b7284f789e0 <none>:<none> 0 211004452 7 days ago n

ainer Creation

Ligh‘[house Applications Beacons Users Signed in as admin@gmail.com

Instances / local.boot2docker / containers / create

testing_kontainer

Image
postgres:latest

Command

/bin/bash

Enviroment Varlables

VAR=foobar

Working Directory

CREATE

© Lighthouse 2014

Pulling Images

Lighthouse Applications Beacons n as admin@gmail.com

Beacons / local.boot2docker / image / add

redis| Q

redis . -

tutum/redis . -

torusware/speedus-redis . -

fedora/redis . -

sameersbn/redis . .

orchardup/redis ' .

Application Management

Lighthouse Applications Beacons Users : as admin@gmail.com

Currently deployed applications

testapp (ID: 1) admin@gmail.com deployed with ID 5

Deployment ID: 5 2 days ago

Running ubuntu:latest
P START ESTOP CREVERT

Show recent deployments

(# UPDATE
production (ID: 2) admin@gmail.com deployed with ID 6
Deployment ID: 6 5 hours ago

Running busybox:latest
» START MSTOP CREVERT

Show recent deployments
(# UPDATE

© Lighthouse 2014

Deployment Updates

Lighthouse Applications Beacons Users Si 1in as admin@gmail.com

« Updated testapp!
Pulling required image — POST images/create?fromimage=ubuntu:latest
Creating new container — POST containers/create?name=testapp_tmp
Deleting old containers — DELETE containers/testapp?force=true

Setting up new container — POST containers/testapp_tmp/rename?name=testapp

» Stream logs

Currently deployed applications

testapp (ID: 1) admin@gmail.com deployed with ID 9

Deployment ID: 5 5 hours ago

Running ubuntu:latest
» START MSTOP CREVERT

Show recent deployments
(£ UPDATE

User Management

nghthou se Applications Beg gned in as admin@gmail.com

Edit admin@gmail.com X
Users

Role

U User

Emall admin@gmail.¢ O Release Engineer
Role Administrator

) Administrator

Beacon Permissions 127.0.0.1:5002
Password

146.148.80.171
© Lighthouse 2014

Beacons
local: © None © Access © Modify © Owner
gce:) None © Access O Modify @ Owner

CANCEL SUBMIT

> docker run -ti debian:jessie /bin/bash
root@:12345/# apt—-get update && apt-get install python
root@:12345/# echo “while True: print ‘foo’” > test.py

> docker commit 12345 foo

> docker run -d --name finn foo python test.py

> docker logs finn

/* a whole lot of foo */
> docker kill finn
> docker push foo

Technical Issue - Testing

Situation

o I’'m a user of Lighthouse who runs important applications with Docker
which use databases shared with Lighthouse.

Challenge

o Need to be confident Lighthouse works precisely as expected
= Testing code that needs external services is difficult

Solution

o Services like external servers or databases can be mocked

= Go has packages specifically for mocking servers
= Databases have varying levels of abstraction

Milestones - Fall

August
o Start of project
September
o Created the Lighthouse organization on Github
October
o Proof of concept presented to Workiva
November
o Basic Docker functionality

Milestones - Spring

January
o Finalized architectures

February
o Authentication, Beacon integration, Container control

March

o Streaming, Container creation
April

o Application management, user management, container logs

Desired Additions

Support for multiple database drivers

Full-stack HTTPS support

Real-time network and resource usage

