
Lighthouse
Senior Design Team May15-17
Iowa State University - Ames, IA
May 1st, 2015

About the Team
● Caleb Brose Team Lead
● Chris Fogerty Communication Lead
● Zach Taylor Key Concept Holder
● Rob Sheehy Key Concept Holder
● Nick Miller Web Designer

Thanks to:
o Dr. Mitra, CS Dept. - Advisor
o Dave Tucker, Workiva - Client

Topics

1. Docker

2. Lighthouse

3. Design

4. Testing and Quality Process

What is Docker?
● “Docker is an open platform for developers and

sysadmins to build, ship and run distributed
applications”

● - docker.com

● Still confused? So were we.

Why use Docker?
● Situation

○ As a Release Manager for a distributed application, I want to ensure
■ Consistency - Developer computers aren’t production servers
■ Stability - Nodes will fail in distributed applications
■ Modularity - Program dependencies and environments need to be isolated

● The Solution
○ Docker

■ Images ensure consistent environments and files
■ Containers ensure stability & runtime isolation

Docker Images
● What

○ An immutable snapshot of an operating system to share with other
machines running docker.

Docker
Registry

Developer

Other
Developers

Servers/Virtual
Machines

Docker Containers
● What

○ A sandboxed instance of a running image.

Container

Container
Image

Images

Stdin/Network Requests

Stdout/Stderr

Hello World, Docker
> docker pull debian

 /* wait a sec to download 84.89 MBs */
> docker images
 /* list of images */
> docker run -ti debian echo ‘hello world’

hello world
> docker ps -a
 /* list of containers */

Why use Lighthouse?
● Docker is great, but I want to:

○ Manage my application as a whole, not as individual Docker instances
○ Utilize cloud providers like GCE or AWS to run my application
○ Control who can change my application
○ Do all of this through a user interface

● The Solution
○ A web-based tool for administrating hundreds of Docker programs

across multiple networks

Lighthouse

Lighthouse

Functional Requirements
● Docker core functionality

o Container/image management

● Lighthouse custom functionality
o Application level control - deployments, new versions, rollbacks
o Cloud provider interfacing

● Application analysis
o Logs, history, usages, etc

● User management

Non-Functional Requirements
● Security

o Authenticated requests
o Authorized users

● Extensibility and documentation
o Additional functionality should be straightforward
o Users should be able to create their own frontend

● Low latency
o Early error detection in the pipeline

Market Survey
● Related products

o Panamax - existed at conception
o Google Container Engine - November 4
o Rocket - December 1
o Docker Swarm - December 4

● How Lighthouse sets itself apart
o More user control
o Enterprise-ready
o Self-hosted

Design

Design

Design - System Diagram

Design - Lighthouse

Design - Beacon

Technical Issue - Why Beacons Exist
● Situation

o As a member of IT/DevOps I want to quickly and efficiently expose my
cluster of Docker VMs

● Challenge
o Need a tool to discover VMs inside a cloud environment with little/no

prior knowledge of Provider

● Solution
o Create software “drivers” for detecting cloud environments

▪ Probe Providers for existing/owned VMs with Docker
▪ Establish basic API for Lighthouse
▪ Create pluggable interface for future cloud providers

Design - Harbor

Technical Issue - Authentication
● Situation

o As a user of Harbor I need to refresh my page
or restart Lighthouse.

● Challenge
o Harbor is a single-page application and uses

client-side template rendering
▪ Causes a problem with routing and authentication

● Solution
o Generate a notification on the server to

automatically inform the client of its auth status

Technical Issue - Streaming
● Situation

o As a user of Harbor, I want to be able to view stats,
progress, and logs without manually refreshing.

● Challenge:
o HTTP responses can be streamed, but there are 3

hops from Docker to Harbor which requires a lot of
coordination

● Solution:
o Stream all Docker responses from Beacon to

Lighthouse and from Lighthouse to Harbor

Technical Issue - Application Streams
● Situation

o As a release manager creating or updating a large application I want real
time updates of the deployment status and concise errors.

● Challenge
o Deployments perform many operations on potentially hundreds of instances

▪ Need to consistent way to report statuses and operation updates

● Solution
o A stream of well-defined status update objects

▪ Operation updates wrap statuses of individual instances
▪ Instances report successes, failures, warnings, etc.

Systems and Testing

Testing and Quality Process

Test-Driven Development in GitHub

● GitHub tracks commits and
discussion
o All pull requests go through code review

● Travis-CI runs unit tests
o Build fails if any tests fail

● Coveralls reports code coverage
o Build fails if coverage is too low

Testing Environment
Lighthouse, Beacon
o Golang packages

▪ testing, testify
o Go fmt

● Harbor
o PhantomJS “headless” browser
o Jasmine behavioral testing framework
o JSHint

Thank you

Beacon Management

Instance Management

Container Creation

Pulling Images

Application Management

Deployment Updates

User Management

Complex Usage
> docker run -ti debian:jessie /bin/bash

root@:12345/# apt-get update && apt-get install python
root@:12345/# echo “while True: print ‘foo’” > test.py

> docker commit 12345 foo
> docker run -d --name finn foo python test.py
> docker logs finn
 /* a whole lot of foo */
> docker kill finn
> docker push foo

Technical Issue - Testing
● Situation

o I’m a user of Lighthouse who runs important applications with Docker
which use databases shared with Lighthouse.

● Challenge
o Need to be confident Lighthouse works precisely as expected

▪ Testing code that needs external services is difficult

● Solution
o Services like external servers or databases can be mocked

▪ Go has packages specifically for mocking servers
▪ Databases have varying levels of abstraction

Milestones - Fall
● August

o Start of project

● September
o Created the Lighthouse organization on Github

● October
o Proof of concept presented to Workiva

● November
o Basic Docker functionality

Milestones - Spring
● January

o Finalized architectures

● February
o Authentication, Beacon integration, Container control

● March
o Streaming, Container creation

● April
o Application management, user management, container logs

Desired Additions
● Support for multiple database drivers

● Full-stack HTTPS support

● Real-time network and resource usage

